
DOI 10.1140/epja/i2005-10247-3

Eur. Phys. J. A 27, 143–155 (2006) THE EUROPEAN

PHYSICAL JOURNAL A

The one-body and two-body density matrices of finite nuclei
with an appropriate treatment of the center-of-mass motion?

A. Shebeko1,a, P. Papakonstantinou2,b, and E. Mavrommatis3,c

1 NCS “Kharkov Institute of Physics and Technology”, Academicheskaya Str. 1, 61108 Kharkov, Ukraine
2 Institute of Nuclear Physics, T.U. Darmstadt, Schlossgartenstr. 9, D-64289 Darmstadt, Germany
3 University of Athens Physics Department, Nuclear and Particle Physics Division, Panepistimiopoli, Ilissia, GR-157 71 Athens,
Greece

Received: 17 July 2005 / Revised version: 26 January 2006 /
Published online: 30 March 2006 – c© Società Italiana di Fisica / Springer-Verlag 2006
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Abstract. The one-body and two-body density matrices in coordinate space and their Fourier transforms
in momentum space are studied for a nucleus (a nonrelativistic, self-bound finite system). Unlike the usual
procedure, suitable for infinite or externally bound systems, they are determined as expectation values of
appropriate intrinsic operators, dependent on the relative coordinates and momenta (Jacobi variables) and
acting on intrinsic wave functions of nuclear states. Thus, translational invariance (TI) is respected. When
handling such intrinsic quantities, we use an algebraic technique based upon the Cartesian representation,
in which the coordinate and momentum operators are linear combinations of the creation and annihilation
operators â† and â for oscillator quanta. Each of the relevant multiplicative operators can then be reduced
to the form: one exponential of the set {â†} times another exponential of the set {â}. In the course
of such a normal-ordering procedure we offer a fresh look at the appearance of “Tassie-Barker” factors,
and point out other model-independent results. The intrinsic wave function of the nucleus in its ground
state is constructed from a nontranslationally-invariant (nTI) one via existing projection techniques. As an
illustration, the one-body and two-body momentum distributions (MDs) for the 4He nucleus are calculated
with the Slater determinant of the harmonic-oscillator model as the trial, nTI wave function. We find that
the TI introduces quite important effects in the MDs.

PACS. 21.60.-n Nuclear structure models and methods – 21.45.+v Few-body systems – 24.10.-i Nuclear
reaction models and methods

1 Introduction

In the last few years the interest in the study of nuclei
from both experimental and theoretical point of view has
shifted from the investigation of one-body quantities (e.g.,
the elastic form factor F (q) and the momentum distribu-
tion η(p)) towards the investigation of two-body quanti-
ties, with the aim of revealing more direct information on
the dynamical correlations between the nucleons (short-
range (SRC) and tensor). The two-body quantities are
connected to the two-body density matrix (2DM) in co-
ordinate or momentum space as are the one-body quan-
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tities connected to the one-body density matrix (1DM).
The 2DM, besides being interesting in itself, allows the
calculation of the expectation value of any two-body op-
erator [1]. In addition to the 2DM ρ[2](r1, r2; r1′ , r2′), we
will also consider the two-body momentum distribution
(TBMD) η[2](p,k), which is the Fourier transform of the
ρ[2](r1, r2; r1′ , r2′) in the variables r1 − r2 and r1′ − r2′
and is connected to the two-nucleon spectral function
S(p,k;E) via integration with respect to the energy E.

A prominent role towards the experimental investi-
gation of the 2DM and related quantities is played by
the study of the electromagnetically induced 2-nucleon
emission (γ,NN), (e, e′NN) which can be carried out with
high accuracy in photon facilities (Elsa, MAMI) and elec-
tron accelerators with high energy, 100% duty-cycle beams
(Jefferson Lab, MAMI). Past, present and near future
experiments provide these useful data [2–6]. Theoretical
methods to analyze the mechanisms of these reactions
and to calculate the relevant nuclear two-body proper-
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ties are under continuous development. In particular, for
the case of finite nuclei the generalized momentum dis-
tribution η(p,Q) [7,8], the two-body momentum distri-
bution η[2](p,k) and other two-body distributions have
been studied for Z = N , `-closed nuclei, as well as the
two-body density matrix for the nuclei 4He [9], 16O and
40Ca [10] and the two-nucleon spectral function S(p,k;E)
for the nucleus 16O (see [11] and references therein).

One of the theoretical issues still under discussion is
the proper consideration of the requirement of transla-
tional invariance and therefore the conservation of the to-
tal momentum of the system. The wave functions which
have been used in the independent-particle shell model
and in theories which take also dynamical correlations into
account (e.g., Brueckner-Hartree-Fock, Variational Monte
Carlo) satisfy the Pauli principle but not the translational
invariance. As a consequence, they contain spurious com-
ponents which result from the motion of the Center of
Mass (CM) in a non-free state. Effects from these (also
known as CM correlations) are found in the calculation of
almost every observable and make impossible the extrac-
tion of information for the intrinsic properties of nuclei
directly from the experimental data. In addition, there is
ambiguity in the proper definition of translationally invari-
ant operators which correspond to the different physical
quantities.

Many efforts have been made towards the solution of
the CM problem. In some of them the treatment of the CM
motion is built right into the theory one is using [12–14]. In
the majority of the efforts the restoration of translational
invariance is attempted after the wave functions have been
developed. One such approach consisted of adding intu-
itively the three extra degrees of freedom of the CM to
the 3A internal coordinates. Work along these lines using
configurations from the harmonic-oscillator model (HOM)
has been carried out by Tassie and Barker [15] and others.
Most of the other approaches use projection techniques to
define suitable intrinsic wave functions with coordinates
referred to the CM. The pioneering works along this di-
rection were made in the ’50s by Gartenhaus and Schwartz
(GS) [16] and Peierls and J. Yoccoz (PY) [17], with vio-
lations of the Galilei invariance (GI), followed by Ernst,
Shakin and Thaler (EST) [18,19], with their critique on
the GS transformation, Vincent [20], Shebeko et al. [21,22]
and others in the ’70s [13,23]. Projection techniques have
been proposed by Schmid and Grümmer [24,25] at the
beginning of the ’90s and rather recently by Schmid and
collaborators using harmonic-oscillator [26] and spherical
Hartree-Fock configurations [27]. We should add that Mi-
haila and Heisenberg have worked out the problem of
CM corrections by expanding them as many-body op-
erators [28]. It seems that if the wave function is very
nearly factorable into a center-of-mass and an intrinsic
component, all the approaches to treat the CM problem
are equivalent, provided that the translationally invariant
operators are used. Also, all the approaches can be carried
out rather simply for the independent particle shell model
with harmonic-oscillator potential.

The consideration of CM effects with one or more of
the above-mentioned methods have mostly addressed the
light nucleus 4He and single-particle quantities: the kinetic
energy, the single-particle energies, the one-body density
matrix, the matter and charge density, the elastic form fac-
tor, the dynamic structure factor, the momentum distribu-
tion and occupation probabilities, the one-body spectral
function, the single-particle overlap function, etc. There
are few calculations for other light-medium nuclei such as
12C, 15N, 16O, 40Ca. The consideration of CM correlations
in two-body quantities has been limited so far, to the best
of our knowledge to the potential energy.

In this paper, we will start with the evaluation of
the one-body density matrix in coordinate space and
related one-body momentum distribution (OBMD). As
mentioned above, CM effects have been considered in the
calculation of 1DM and OBMD before. By starting with
such evaluation we want to present our method and tech-
nicalities. We then proceed to evaluate the two-body den-
sity matrix and two-body momentum distribution. We will
take into account the CM correlations by using the EST
prescription or fixed-CM approximation to construct the
intrinsic wave function. We also use a specific prescrip-
tion for defining the corresponding intrinsic operators. As
mentioned before, the EST method has been introduced
in refs. [18,19]. Subsequently, it has been used in the cal-
culation of the elastic and dynamic form factor and the
momentum distribution of 4He [22,29]. The EST intrinsic
many-body wave function is constructed from a transla-
tionally non-invariant one by projecting onto an eigenstate
of total momentum using a non-unitary operator which
fixes the CM coordinate R to be equal to zero. This trans-
formation has certain advantages compared to GS trans-
formation [19] (in particular, it ensures a correct behavior
under Galilean transformation). It has turned out [19] (see
also [22]) that the GS transformation can be reduced to
the EST projection procedure. As for the relevant one-
and two-body intrinsic operators, they are defined by re-
placing the coordinates and momenta by relative ones
(Jacobi variables). Unlike the definitions of the overlap
integrals with intrinsic wave functions used in ref. [30],
we are dealing with the expectation values of the intrin-
sic operators as they occur under the treatment of the
aforementioned quantities. Subsequently, we present the
way for calculating the matrix elements defined by the
above intrinsic wave functions and operators using an al-
gebraic technique introduced in ref. [21] and based upon
the Cartesian representation of the coordinate and mo-
mentum operators in terms of linear combinations of the
creation and annihilation vector operators (â† and â, re-
spectively) for oscillator quanta in the three different space
directions. With this technique, one avoids to deal with
difficult multiple integrals and therefore it seems to be
the technique of choice in the case of systems with large
number of bodies. The Cartesian representation is partic-
ularly convenient in the case of wave functions constructed
with Slater determinants. The application of the above to
the evaluation of the OBMD leads to the derivation of
the Tassie-Barker factor [15] (exp[r20q

2/4A], r0 oscillator
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length parameter entering into the definition of â† and â
—see sect. 2) in a model-independent way. In addition,
the evaluation of both OBMD and TBMD leads to other
model-independent results.

Next, the intrinsic OBMD and TBMD are evaluated
in the independent particle shell model with harmonic-
oscillator wave functions. Such a model leads to compact
analytical expressions. Moreover, it is expected that the
results derived with its use will be close to the ones that
will be obtained with the use of more realistic single-
particle wave functions (Woods-Saxon or Hartree-Fock),
since the quantities under study are not defined in terms
of the asymptotic behavior of the wave function for large
r. The latter is wrong in the case of the wave function in
the HOM.

In this work, the above evaluation is carried out for
the intrinsic OBMD and TBMD of the nucleus 4He. It
is expected that the CM effects are more pronounced for
light nuclei. In addition, due to its high central density (al-
most 3 times nuclear matter density) the nucleus 4He is
a particularly appropriate system to search for the origin
of SRC. The evaluation of the intrinsic OBMD of 4He has
appeared before in the case of HOM [22] as well as other
single-particle models [29]. The (not intrinsic) TBMD of
4He has been studied in refs. [11,31] by including in the
HOM Jastrow-type correlations via the lowest term of
the so-called low-order approximation [32], but ignoring
CM correlations. A comparison of the present results with
those of refs. [11,31] will reveal the relative importance of
the CM and SRC effects in the same nucleus. The effect of
the different correlations is estimated by introducing the
quantity η[2](p,k)/η(p)η(k). We find that the CM correc-
tion reduces the width of OBMD and TBMD and in the
case of the TBMD introduces a dependence on the angle
between p and k, a shift of its peak in favor of opposite
momenta and significant deviations for large values of p
and k and angles close to 180◦. This last effect is also found
when SRC are considered. Up to now, the TBMD of 3He
has been experimentally studied at Jefferson Lab [5].

The paper is organized as follows. In sect. 2, we present
the general formalism of constructing appropriate wave
functions that respect translational invariance using the
Ernst-Shakin-Thaler prescription and describe the evalu-
ation of matrix elements of intrinsic operators using the
Cartesian representation. In sect. 3 the definitions of the
relevant operators for the intrinsic quantities under study,
namely the one-body quantities 1DM, form factor and
OBMD and the two-body quantities 2DM and TBMD,
are introduced in terms of the relative coordinates and mo-
menta (Jacobi variables). In sect. 4 the above quantities
are evaluated using the Cartesian representation. In sect. 5
by considering specifically the independent-particle shell
model with harmonic-oscillator wave functions, results are
derived and discussed for the OBMD and TBMD of the
nucleus 4He. Finally, in sect. 6 a summary of the results
and hints for possible further work are given.

2 Constructing intrinsic wave functions and

matrix elements. The Cartesian

representation

Let us consider a nonrelativistic system composed of A
particles (nucleons). The coordinate (momentum) vector
of the α-th particle will be denoted by rα (pα). Occasion-
ally, we will use the generic symbol α, which may include
spin and/or isospin degrees of freedom, but in most cases
we will suppress these degrees of freedom for the sake of
simplicity.

In principle, the eigenvectors of the total Hamiltonian
Ĥ of the system |ΨP〉, which belong to the eigenvalue P

of the total momentum operator P̂, can be written as the
product

|ΨP〉 = |P) |Ψint〉. (1)

Following ref. [18], the bracket | ) is used to repre-
sent a vector in the space of the center-of-mass coordi-
nates, so that P̂|P) = P|P). A ket (bra) with an index
| · · · 〉α (α〈· · · |) will refer to the state of the α-th particle.
The intrinsic wave function Ψint depends upon the A − 1
independent intrinsic variables. These may be expressed
in terms of the Jacobi coordinates

ξα = rα+1 −
1

α

α
∑

β=1

rβ (α = 1, 2, . . . , A− 1) (2)

or the corresponding canonically conjugate momenta

ηα =
1

α+ 1

(

αpα+1 −
α
∑

β=1

pβ

)

(α = 1, 2, . . . , A− 1).

(3)
The wave function ΨP(r1, r2, . . . , rA) in the coordinate
representation satisfies the requirement of translational in-
variance,

ΨP(r1+a, r2+a, . . . , rA+a)=exp(iP·a)ΨP(r1, r2, . . . , rA),
(4)

for any arbitrary displacement a.
When describing scattering processes, it is convenient

to consider the initial target state |0〉 as a P-packet,

|0〉 =
∫

|ΨP〉dP〈ΨP|0〉 ≡
∫

c(P)|ΨP〉d3P (5)

(see also [33], Chapt. XI), with the normalization condi-
tion

〈0 | 0〉 =
∫

|c(P)|2 d3P = 1. (6)

Being the exact Ĥ-eigenvectors, the states |ΨP〉 belong
simultaneously to the set of eigenvectors of the total mo-
mentum operator P̂ with eigenvalues P close to a given
value Pt, e.g., Pt = 0. The final state of the recoil-
ing nucleus is written in the form |ΨP′〉. Evidently, the
wavepacket |0〉 is not translationally invariant. However,
this shortcoming can be corrected by letting the width of
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the packet ∆ go to zero at the end of the calculations, i.e.,
assuming that

lim
∆→0

∫

|c(P)|2g(P)d3P =

∫

δ(P−Pt)g(P)dP = g(Pt)

(7)
for an arbitrary function g(P).

This prescription has a transparent physical meaning
being adequate to many scattering situations. With its
aid one can express the corresponding cross-sections in
terms of intrinsic quantities. Let us consider, for instance,
the elastic scattering of a particle from the nucleus. In the
Plane Wave Impulse Approximation (PWIA) and neglect-
ing the Fermi-motion effects, the cross-section of interest
can be represented in the form

σ(θ) = lim
∆→0

∫

K(P′) d3P ′|〈ΨP′ | exp[iq · r̂A]|0〉|2 , (8)

where q is the momentum transfer, θ the scat-
tering angle and K(P′) the corresponding kinemat-
ical factor. By substituting |0〉 from eq. (5), us-

ing eq. (1) and writing r̂A = (r̂A − R̂) + R̂, we
evaluate 〈ΨP′ | exp[iq · r̂A]|0〉 =

∫

d3Pc(P)(P′| exp(iq ·
R̂)|P)〈Ψint| exp [iq·(r̂A−R̂)]|Ψint〉=

∫

d3Pc(P)δ(P′−P−
q)Fint(q), that leads to

σ(θ) = K(Pt + q) |Fint(q)|2 ,

where the elastic (intrinsic) form factor (FF) Fint(q) is
determined by

Fint(q)=〈Ψint| exp[iq · (r̂A− R̂)]|Ψint〉≡〈Ψint|F̂int(q)|Ψint〉.
(9)

Use has been made, on the one hand, of the fact that in-
trinsic and CM operators commute with each other and,
on the other hand, of the condition (7). The Fint(q) is typ-
ical of the quantities of interest, viz, it is the expectation
value of an operator that depends on intrinsic coordinates,
namely r̂A − R̂.

As we have mentioned in the introduction, our aim is
to calculate expectation values of one- and two-body oper-
ators in the nuclear ground state (g.s.) taking into account
the requirement for TI. We are interested, in particular, in
intrinsic quantities which appear in analytical expressions
describing various scattering cross-sections off a nucleus
(in general, a finite system). Such quantities include, be-
sides the elastic FF F (q), the particle density ρ(r), the
dynamical FF S(q, ω), the OBMD η(p) which is often
associated with the one-body spectral function P (p, E),
and the TBMD η[2](p,k) that is related to the two-body
spectral function S(p,k;E).

At the initial stage of the calculations, the nuclear g.s.
is represented by a P-packet as introduced above. Then
the main task is to construct the TI wave functions |ΨP〉
in a tractable manner, so that the CM-motion separation
can be achieved. It is important to properly define the
quantities of interest in terms of intrinsic coordinates, as
was already done for the FF in eq. (9). We will tackle this
issue in the next section.

First of all, let us consider a Slater determinant,

|Det〉 = 1√
A!

∑

P̂∈SA

εP P̂{|φp1
(1)〉|φp2

(2)〉 · · · |φpA(A)〉},

(10)
as the total wave function |Ψ0〉 for an approximate and
convenient description of the nuclear g.s., in the frame-
work of the independent-particle model or the Hartree-
Fock approach. In eq. (10), εP is the parity factor for the

permutation P̂, φpα are the occupied single-particle or-
bitals and the summation runs over all permutations of
the symmetric group SA.

The wave function (10) exemplifies wave functions
which do not possess the property of TI, eq. (4). Obvi-
ously, any wave function that is constructed by acting on
|Det〉 with a two- or a three- body correlation operator
(e.g., a Jastrow correlation factor) will not be translation-
ally invariant either. There are different ways to restore
TI if one starts with a “bad” wave function |Ψ〉 such as
|Det〉 [17,18,25,26]. We shall employ the so-called “fixed-
CM approximation”, or EST prescription [18]. However,
other projection recipes can be applied without essential
changes —we will come back to this point at the end of
sect. 4. Within the EST approach, the approximate com-
plete wave function is determined by

|ΨEST
P 〉 = |P)|ΨEST

int 〉 (11)

and the intrinsic unit-normalized wave function is given
by

|ΨEST
int 〉 = (R = 0|Ψ〉/[〈Ψ |δ(R̂)|Ψ〉]1/2, (12)

where (R = 0| is the eigenvector of the CM operator, R̂ =

A−1
∑A

α=1 r̂α. We have used the relation |R = X)(R =

X| = δ(R̂ − X). For simplicity, we confine ourselves to
the case of identical particles with mass m. The complete
EST wave function can now be represented as

|ΨEST
P 〉 = UP|Ψ〉/[〈Ψ |(2π)3δ(R̂)|Ψ〉]1/2, (13)

where, following [18], we have introduced the projection
operator (U2

P = UP)

UP ≡ (2π)3/2|P)(R = 0|. (14)

Given an operator Â, its matrix elements with the TI sym-
metry can be written in the form

〈Ψ ′
P′ |Â|ΨP〉 =

〈Ψ ′|U †
P′ÂUP|Ψ〉

[〈Ψ ′|(2π)3δ(R̂)|Ψ ′〉〈Ψ |(2π)3δ(R̂)|Ψ〉]1/2
.

(15)
Its expectation value in the g.s.

|0〉 =
∫

d3Pc(P)UP|Ψ0〉/[〈Ψ0|(2π)3δ(R̂)|Ψ0〉]1/2

is expressed in terms of the expectation value of the oper-

ator U †
P′ÂUP,

〈0|Â|0〉 =
∫

d3P

∫

d3P ′c∗(P′)c(P)
〈Ψ0|U †

P′ÂUP|Ψ0〉
〈Ψ0|(2π)3δ(R̂)|Ψ0〉

.

(16)
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In addition, if Â is an intrinsic operator Âint, acting only
on the space of intrinsic variables, we find

AEST ≡ 〈0|Âint|0〉 = 〈Ψ0|ÂEST|Ψ0〉/〈Ψ0|δ(R̂)|Ψ0〉 (17)

ÂEST = |R = 0)Âint(R = 0| = δ(R̂)Âint = Âintδ(R̂).

(18)

When deriving eq. (17) we have employed the relation
(P|P′) = δ(P−P′) and eq. (6).

It has been shown [22] that the calculation of expecta-

tion values of many-body operators like ÂEST can be sub-
stantially simplified using the Cartesian representation.
In this representation the coordinate (momentum) opera-
tor r̂α (p̂α) of the α-th particle is expressed through the
Cartesian creation and annihilation operators â† and â,

r̂ =
r0√
2

(

â† + â
)

p̂ = i
p0√
2

(

â† − â
)

r0p0 = 1, (19)

obeying the commutation relations

[

â†l , â
†
j

]

= [âl, âj ] = 0 ,
[

âl, â
†
j

]

= δlj , (20)

which are the stepping stones in what follows. The indices
l, j = 1, 2, 3 label the three Cartesian axes x, y, z.

As the “length” parameter r0 one can choose the os-
cillator parameter of a suitable harmonic-oscillator basis
in which the nuclear wave function is expanded. Its basis
vectors |nx ny nz〉1⊗ . . .⊗|nx ny nz〉A, where the quantum
numbers nx, ny, nz take the values 0, 1, . . ., are composed
of the single-particle states

|nx ny nz〉 = [nx!ny!nz!]
− 1

2

[

â†1

]nx [

â†2

]ny [

â†3

]nz
|0 0 0〉 ,

(21)

which are the eigenstates of the Hamiltonian Ĥosc = ω(â† ·
â+ 3

2 ),

Ĥosc|nx ny nz〉 =
(

nx + ny + nz +
3
2

)

ω |nx ny nz〉 ,

where ω is the oscillation frequency along the three axes
x, y and z. We use the system of units with h̄ = c = 1. The
single-particle wave function in coordinate representation
is written

〈r | nx ny nz〉 = ψnx(x)ψny (y)ψnz (z) ,

where [34,35]

ψn(s) =
[√
π2nn!r0

]− 1
2 Hn(s/r0) exp(−s2/2r20)

and Hn(x) is a Hermite polynomial. By definition, the

oscillator parameter equals r0 = [mω]−
1
2 .

The general idea in subsequent manipulations is to
bring a given operator into a form with normal ordering,
in which the destruction operators â are to the right with
respect to the creation operators â† (see sects. 4, 5).

For this purpose, we will also make use of the operator
identity

eÂ+B̂ = eÂeB̂e−
1
2 Ĉ = eB̂eÂe

1
2 Ĉ , (22)

which is valid for arbitrary operators Â and B̂ if the opera-
tor Ĉ = [Â, B̂] commutes with each of them. In particular,

ex·Â+y·B̂ = ex·Âey·B̂e−
1
2x·yC = ey·B̂ex·Âe

1
2x·yC , (23)

if [Âl, B̂j ] = Cδlj for (l, j = 1, 2, 3) and C is a c-number.

3 The intrinsic density matrices and related

quantities

In the preceding discussion it is implied that the operators
of interest have been expressed in terms of the relevant
coordinates, e.g., intrinsic ones. It is not always straight-
forward how to do this. Here we refer mainly to the defi-
nitions of n-body density matrices (nDMs). For instance,
it is a common practice [36–38] to write the 1DM in coor-
dinate representation as the expectation value

ρ[1](r, r′) = A〈Ψ |ρ̂[1](r, r′)|Ψ〉 (24)

of the projection operator ρ̂[1](r, r′),

ρ̂[1](r, r′) = |r〉AA〈r′|

≡
∫

|r1 . . . rA−1r〉dr1 . . . drA−1〈r1 . . . rA−1r
′|

= exp(−ip̂A · r)|rA = 0〉〈rA = 0| exp(ip̂A · r′)
= exp(−ip̂A · r)δ(r̂A) exp(ip̂A · r′)

in a given unit-normalized state Ψ . Its diagonal elements
give the one-body density distribution ρ(r) = ρ[1](r, r).
The off-diagonal elements ρ[1](r, r′) provide a measure of
the correlation between the probabilities to find a particle
in the two positions r and r′ while all the other particles
are kept fixed. Such a definition seems to be satisfactory
in the case of infinite systems, or systems bound by an
external potential, e.g. the electrons of an atom. However,
it is apparently problematic for finite self-bound systems
like nuclei, where the constituent particles are localized
around their CM due to their interaction. Therefore, we
prefer to deal with the intrinsic particle distributions that
depend only on intrinsic wave functions and Jacobi coor-
dinates. Only such quantities are of physical meaning in
the case of finite self-bound nonrelativistic systems. In the
next subsections this will be demonstrated for the intrinsic
1DM and 2DM and related quantities.

3.1 The intrinsic one-body density matrix and
momentum distribution

The intrinsic 1DM in coordinate space may be defined as

ρ
[1]
int(r, r

′) ≡ A〈Ψint|ρ̂[1]int(r, r
′)|Ψint〉 (25)

= A〈Ψint|ξA−1 = r〉〈ξA−1 = r′|Ψint〉 (26)

=A

∫

d3ξ1 . . . d
3ξA−2Ψ

†
int(ξ1, . . . , ξA−2, r)

×Ψint(ξ1, . . . , ξA−2, r
′), (27)
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so that the normalization condition
∫

d3rρ
[1]
int(r, r) = A

is satisfied. We would like to emphasize that this is not
an “imposed” definition. It appears naturally when eval-
uating the dynamical FF [21] (or its diagonal part, if one
uses the terminology adopted in Chapt. XI of the mono-
graph [33]), which is related to the intrinsic OBMD [39]

ηint(p) ≡ A〈Ψint|η̂int(p)|Ψint〉 (28)

with

η̂int(p) = δ(p− p̂A + P̂/A) = δ(p− η̂A−1) (29)

= |ηA−1 = p〉〈ηA−1 = p|. (30)

The OBMD is the Fourier transform of the 1DM ρ
[1]
int(r, r

′),

ηint(p) = (2π)−3

∫

d3rd3r′ exp [ip · (r− r′)]ρ[1]int(r, r
′).

(31)
See also ref. [40]. At the same time, the intrinsic one-body
density ρint(r) is the Fourier transform of the elastic FF
determined by eq. (9), or inversely,

Fint(q) =
1

A

∫

eiq·rρint(r)d
3r. (32)

From eq. (32) it follows that ρint(r) = A〈Ψint|ρ̂int(r)|Ψint〉,
where

ρ̂int(r) = δ(r− r̂A + R̂) = δ(r− A−1
A ξ̂A−1). (33)

We notice that

ρint(r) =
[

A
A−1

]3

ρ
[1]
int(

A
A−1r,

A
A−1r). (34)

In other words, the intrinsic 1DM does not have the prop-
erty ρ[1](r) = ρ[1](r, r) which can be justified for infinite
systems, although it has often been exploited in approxi-
mate treatments of finite systems (cf., however, ref. [30],
where an alternative definition of the 1DM for finite self-
bound systems was proposed).

3.2 The intrinsic two-body density matrix and
two-body momentum distribution

The formulation presented above will now be applied to
the 2DM. In particular, we will focus on the TBMD, usu-
ally defined as the diagonal part of the 2DM in momen-
tum space [11,31]. As we have already discussed, the rele-
vant definitions require some revision in the case of finite,
self-bound systems. Here we will consider the expectation
value

η
[2]
int(p,k) = A(A− 1)〈Ψint|δ(p̂A−1 − 1

A P̂− p)
×δ(p̂A − 1

A P̂− k)|Ψint〉
≡ A(A− 1)〈Ψint|η̂[2]int(p,k)|Ψint〉, (35)

that can be interpreted as the TBMD with respect to the
intrinsic momentum variables. We can write for the oper-

ator η̂
[2]
int(p,k)

η̂
[2]
int(p,k)=(2π)−6

∫

d3λ1d
3λ2e

−ip·λ1e−ik·λ2Êint(λ1,λ2).

(36)

The operator Êint(λ1,λ2) is expressed in terms of the Ja-
cobi variables,

Êint(λ1,λ2)=exp[iλ1 · η̂A−2] exp[i(λ2 − 1
A−1λ1) · η̂A−1],

(37)

if the relations p̂A−P̂/A= η̂A−1 and p̂A−1−p̂A= η̂A−2−
A

A−1 η̂A−1 are used. Using the completeness of the ξ-basis,
we find

Êint(λ1,λ2) =

∫

d3xd3yd3x′d3y′δ(x+ λ1 − x′)

×δ(y + λ2 − 1
A−1λ1 − y

′)

×ρ̂[2]int(x,y;x
′,y′) (38)

with

ρ̂
[2]
int(x,y;x

′,y′) = |ξA−2 = x〉〈ξA−2 = x′|
⊗|ξA−1 = y〉〈ξA−1 = y′| .

The latter is the intrinsic 2DM operator in coordinate
space. It follows from eq. (38) that

η̂
[2]
int(p,k) = (2π)−6

∫

d3xd3yd3x′d3y′ρ̂
[2]
int(x,y;x

′,y′)

× exp[i(p+ 1
A−1k) · (x− x

′)]

× exp[ik · (y − y′)]. (39)

Unlike the usual relationship

η̂[2](p,k) ≡ η̂[2](p,k;p,k)

= (2π)−6

∫

d3rd3sd3r′d3s′eip·(r−r
′)eik·(s−s

′)

×ρ̂[2](r, s; r′, s′),

where η̂[2](p,k) is the TBMD operator and ρ̂[2](r, s; r′, s′)
(η̂[2](p,k;p′,k′)) the 2DM operator in coordinate (mo-
mentum) space as defined, for example, in refs. [38,11],
the r.h.s. of eq. (39) contains a shift k/(A − 1) of the
argument p, which may be negligibly small when the par-
ticle number A increases. However, this is not the case for
few-body systems.

4 The intrinsic density matrices and related

quantities in the Cartesian representation

The intrinsic quantities are defined above in terms of oper-
ators, which can be written as products of A operators act-
ing on the subspaces of the separate A particles. Here we
will show their evaluation in the Cartesian representation.
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As an illustration, let us start from the operator related
to the elastic FF, eq. (9),

F̂int(q)=exp[iq ·(r̂A−R̂)]=e−i
r̂1
A
·q . . . e−i

r̂A−1
A

·qei
A−1
A
r̂A·q.

Notice that

ρ̂int(r) = δ(r̂A − R̂− r) = (2π)−3

∫

e−iq·rF̂int(q)d
3q.

Using eqs. (19), (20) and (23), we find

e−i r̂
A
·q = e

−i
r0√
2A
q·(â†+â)

= e−
r20q

2

4A2 e
−i

r0√
2A
q·â†

e
−i

r0√
2A
q·â

,

ei
A−1
A
r·q = e−

(A−1)2

A2

r20q
2

4 e
iA−1
A

r0√
2
q·â†

e
iA−1
A

r0√
2
q·â

,

whence

F̂int(q) = e−(1− 1
A
)
r20q

2

4 Ô1(α) . . . ÔA−1(α)ÔA(β) ,

where

α = −i r0√
2A
q , β = i r0√

2
(1−A−1)q. (40)

Henceforth we use the notation

Ôi(z) ≡ e−z
∗·â†i ez·âi , (41)

with i = 1, 2, . . . , A and any complex vector z, for a re-
curring operator structure. In fact, one finds that all the
intrinsic one- and two-particle operators of interest con-
tain this operator structure:

Ô1(z) · · · ÔA−2(z)ÔA−1(x2)ÔA(x1),

where the vectors z, x2, x1 are related by the equation
(A−2)z+x2+x1 = 0. In the case of one-particle operators,
x2 = z.

Therefore, according to eq. (9), the elastic FF can be
written as

Fint(q)=e−(1− 1
A
)
r20q

2

4 〈Ψint|Ô1(α). . . ÔA−1(α)ÔA(β)|Ψint〉,
(42)

where the vectors α and β are determined by eqs. (40). In
the r.h.s. of the equation we find the Tassie-Barker (TB)
factor exp(r20q

2/4A) [15] with the “length” parameter r0.
In our approach this factor results from the specific struc-
ture of the intrinsic operator F̂int(q), being independent
upon the choice of the nuclear g.s. wave function (in gen-
eral, the wave function of the finite system under study).
As is well known, the TB factor appears directly in cal-
culations, where the nuclear ground state is described by
the simple harmonic-oscillator model.

In the fixed-CM approximation, as we demonstrated
in sect. 2 by means of eqs. (17), (18), one has to evaluate
the ratio

FEST(q) =
〈Ψ0|F̂EST(q)|Ψ0〉
〈Ψ0|F̂EST(0)|Ψ0〉

(43)

with
F̂EST(q) = δ(R̂)F̂int(q).

Using the integral representation (2π)3δ(R̂) =
∫

exp(iξ ·
R̂)d3ξ and applying the same technique as before, one can
show that

F̂EST(q) = e−(1− 1
A
)
r20q

2

4

∫

d3ξe−r2
0ξ

2/4A

×Ô1(α
′) . . . ÔA−1(α

′)ÔA(β
′) , (44)

where

α′ = i r0√
2A

(ξ − q) , β′ = i r0√
2

[

ξ

A
+ (1−A−1)q

]

.

When calculating expectation values like those in
eq. (43), the representation (44) is especially helpful if
the wave function Ψ0 is a Slater determinant or a linear
combination of Slater determinants. This has been demon-
strated in particular in refs. [22,41], where the single-
particle orbitals entering the Slater determinant are eigen-
functions of a harmonic-oscillator potential with oscilla-
tor parameter r0. Recently, similar calculations have been
carried out beyond the HOM [29] with the single-particle
orbitals approximated by a truncated expansion in the
Cartesian basis vectors of eq. (21).

The intrinsic 1DM operator can also be expressed in
terms of the Cartesian operators â† and â. We can rewrite

the operator ρ̂
[1]
int(r, r

′) from eq. (25) as

ρ̂
[1]
int(r, r

′) = e−iη̂A−1·rδ(ξ̂A−1)e
iη̂A−1·r′

= (2π)−3

∫

d3λ exp[−i(p̂A − P̂
A ) · r]

× exp[i A
A−1λ · (r̂A − R̂)]

× exp[i(p̂A − P̂
A ) · r′] . (45)

As before, the general idea is to bring this operator in
a form with normal ordering, where the destruction op-
erators âA are to the right with respect to the creation

operators â†A. To do this, we note that

exp
[

i A
A−1λ · (r̂A − R̂)

]

= exp[− A
A−1

r2
0λ

2

4 ]

× exp[i A
A−1

r0√
2A
λ · (â†A − D̂†

A )]

× exp[i A
A−1

r0√
2A
λ · (âA − D̂

A )] ,

where D̂ =
∑A

α=1 âα is the “collective” destruction opera-

tor with the property [D̂l, D̂
†
j ] = Aδlj (l, j = 1, 2, 3). After

some modest effort we arrive at the following result:

ρ̂
[1]
int(r, r

′) = (2π)−3exp[−A−1
A

p2
0

4 (r− r
′)2]

×
∫

d3λ exp[−A−1
A

r2
0

4 λ
2] exp[−iλ2 · (r+ r

′)]

× exp[( p0√
2
(r− r′) + i A

A−1
r0√
2A
λ) · (â† − D̂†

A )]

× exp[(− p0√
2
(r− r′) + i A

A−1
r0√
2A
λ) · (â− D̂

A )] .

The operator ρ̂
[1]
EST(r, r

′) = δ(R̂)ρ̂
[1]
int(r, r

′) can be repre-
sented in a similar way. Furthermore, taking into account
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eq. (31), the corresponding OBMD operator η̂int(p) equals

η̂int(p) = (2π)−3

∫

d3y exp[ip · y] exp[−A−1
A

p2
0

4 y
2]

× exp[ p0√
2
y · (â† − D̂†

A )]

× exp[ p0√
2
y · (â− D̂

A )] (46)

= (2π)−3

∫

d3y exp[ip · y] exp[−A−1
A

p2
0

4 y
2]

×Ô1(χ) . . . ÔA−1(χ)ÔA(γ). (47)

As for the operator η̂EST(p), we find

η̂EST(p) = (2π)−3

∫

d3yd3ξ exp[−A−1
A

p2
0

4 y
2]

× exp[− 1
A

r2
0

4 ξ
2] exp[iy · p]

×Ô1(χ
′) . . . ÔA−1(χ

′)ÔA(γ
′) , (48)

where

γ = − p0√
2
(1− 1

A )y , χ = p0√
2A
y (49)

γ′=i r0√
2A
ξ − p0√

2
(1− 1

A )y , χ′=i r0√
2A
ξ + p0√

2A
y. (50)

With the help of eqs. (17), (18), (48), (50), the OBMD

ηEST(p) = A
〈Ψ0|η̂EST(p)|Ψ0〉
〈Ψ0|δ(R̂)|Ψ0〉

can be evaluated like the elastic FF FEST(q) in the fixed-
CM approximation.

By comparing the expressions

η̂int(p) = (2π)−3

∫

dy exp[iy · p] exp
[

iy ·
(

p̂A −
1

A
P̂

)]

,

following from eq. (29), and

F̂int(y) = exp[iy · (r̂A − R̂)],

we realize that it is sufficient to apply our algebraic tech-
nique to the operator

exp

[

iy ·
(

b1

(

â
†
A −

1

A
D̂†

)

+ b2

(

âA −
1

A
D̂

))]

.

Then we can generate the intrinsic operators F̂int (or ρ̂int)
and η̂int by changing the values of b1, b2.

Similar manipulations lead to the following expression
for the operator Êint that enters in the definition of the

TBMD operator η̂
[2]
int(p,k) (see eqs. (36)-(38)):

Êint(λ1,λ2) = e−
p20λ

2

8 e−
A−2
A

p20Λ
2

2

× Ô1(ζ) . . . ÔA−2(ζ)ÔA−1(γ2)ÔA(γ1), (51)

where

γ1 = p0√
2
(A−2

A Λ− 1
2λ) , γ2 = p0√

2
(A−2

A Λ+ 1
2λ) ,

ζ = −
√
2p0

AΛ.

We have set Λ = (λ1 + λ2)/2 and λ = λ1 − λ2. In order
to obtain the TBMD operator in the fixed-CM approxi-
mation, one first needs to evaluate

ÊEST(λ1,λ2) = (2π)3δ(R̂)Êint(λ1,λ2). (52)

Again, after some algebra one can show that

ÊEST(λ1,λ2) =
∫

d3κe−r2
0κ

2/4Ae−p2
0λ

2/8e−
A−2
2A p2

0Λ
2

×Ô1(ζ
′) . . . ÔA−2(ζ

′)ÔA−1(γ
′
2)ÔA(γ

′
1) , (53)

where

γ′1 = i r0√
2A
κ+ p0√

2
(A−2

A Λ− 1
2λ) ,

γ′2 = i r0√
2A
κ+ p0√

2
(A−2

A Λ+ 1
2λ)

and
ζ′ = i r0√

2A
κ−

√
2p0

AΛ .

The respective TBMD can be written as

η
[2]
EST(p,k) = (2π)−6A(A− 1)

∫

d3Λd3λe−ip·(Λ+λ/2)

×e−ik·(Λ−λ/2)N(Λ+ λ/2,Λ− λ/2)
N(0, 0)

(54)

with
N(λ1,λ2) = 〈Ψ0|ÊEST(λ1,λ2)|Ψ0〉.

One can verify that this distribution meets the sequential
relation

∫

η
[2]
EST(p,k)d

3p = (A− 1)ηEST(k). (55)

The exposed method can be helpful in more general
situations when one has to handle translationally invariant
states of the kind

|ΨG
P 〉 = |P) |ΨG

int〉, (56)

with the normalized state vector in the (3A − 3)-
dimensional intrinsic Hilbert space |ΨG

int〉 defined by

|ΨG
int〉 =

(G|Ψ0〉
[〈Ψ0|G)(G|Ψ0〉]1/2

. (57)

Here, |G) is any arbitrary vector in the CM space so that
the scalar product (G|Ψ0〉 represents integration of the
CM variable only. Such general cases were considered in
ref. [18]. The expectation value of the intrinsic operator

Âint in the state |0G〉 =
∫

d3Pc(P)|P) |ΨG
int〉 is

AG ≡ 〈0G|Âint|0G〉 = 〈Ψ0|ÂG|Ψ0〉/〈Ψ0|G)(G|Ψ0〉, (58)

ÂG = |G)Âint(G| = |G)(G|Âint = Âint|G)(G|. (59)

(Cf. eqs. (24)-(25) in ref. [19].)

The operator ÂG can be represented in the two equiv-
alent forms

ÂG =

∫

d3P

∫

d3P ′G∗(P′)G(P)M̂(P,P′)Âint (60)
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and

ÂG =

∫

d3R

∫

d3R′G̃∗(R′)G̃(R)M̂(R,R′)Âint (61)

with the projection operators M̂(P,P′) = |P)(P′| and
M̂(R,R′) = |R)(R′|. The functions G(P) = (P|G) and

G̃(R) = (R|G) represent the vector |G) in the two bases

composed of the P-eigenvectors (i.e., P̂|P) = P|P)) and

R-eigenvectors (i.e., R̂|R) = R|R)), respectively.
So far, the function G has been totally arbitrary. If

we set G̃(R) = δ(R), i.e., |G) = |R = 0) and G(P) =
(2π)−3/2, we repeat the EST prescription with the intrin-
sic state |ΨEST

int 〉, eq. (12), and the expectation value:

AEST =
〈Ψ0|δ(R̂)Âint|Ψ0〉
〈Ψ0|δ(R̂)|Ψ0〉

. (62)

If, on the other hand, we set G(P) = δ(P), i.e., |G) =

|R = 0) and G̃(R) = (2π)−3/2, we arrive at the no-fixed-
CM approximation after Peierls and Yoccoz [17] in con-
structing the intrinsic state

|ΨPY
int 〉 =

(P = 0|Ψ0〉
[〈Ψ0|δ(P̂)|Ψ0〉]1/2

. (63)

The expectation value of interest is

APY =
〈Ψ0|δ(P̂)Âint|Ψ0〉
〈Ψ0|δ(P̂)|Ψ0〉

. (64)

Note that within the PY approach the TI state vector for
a nucleus moving with momentum P is approximated by
|ΨPY
P 〉 = |P)(P|Ψ0〉. Such a model is incompatible with the

Galileo invariance requirement. The restoration of Galileo
invariance was discussed by Peierls and Thouless [42]. The
unit-normalized vector given by eq. (63) corresponds to
the PY prescription for the nucleus rest frame only. In
this context we would like to refer again to the several
calculations in nuclei with the ansatz (63) performed re-
cently by Schmid and his colleagues [26,27].

Previous experience prompts us to unify forthcoming
calculations of quantities like (62) and (64) by introduc-

ing one δ-function, δ(c1D̂
† + c2D̂), where c1, c2 c-number

parameters, instead of the two functions δ(R̂) and δ(P̂).
Along these guidelines, one is able to build up a family
of generating functions which can be calculated with the
help of the algebraic technique developed in this article.

Finally, the following representation:

M̂(R,R′) = exp(−iP̂ ·R)δ(R̂) exp(iP̂ ·R′)

might be useful in calculations employing a refined de-
termination of the weight function G. In particular, as
outlined in ref. [18], the “best” G must be chosen so as to
minimize the expectation value of the intrinsic Hamilto-
nian. See also ref. [20], devoted to an optimal separation
of CM motion in many-body systems.

Closing this section, we should note that within the
simple HOM, where the single-particle states are described

as pure harmonic-oscillator wave functions, the total wave
function is always a product of the CM wave function
and an intrinsic one. Therefore, for intrinsic quantities,
one gets the same results with or without the use of a
projection technique.

5 The intrinsic one-body and two-body

momentum distributions: Application to 4He

and discussion

The many-particle operators encountered so far have much
in common with each other owing to the operator struc-
ture appearing in each of them,

Ô1(z) · · · ÔA−2(z)ÔA−1(x2)ÔA(x1).

Let us derive their expectation value in the independent-
particle model. The wave function is then a Slater de-
terminant |Det〉 (eq. (10)). The following formal result is
straightforward:

〈Det|Ô1(z) · · · ÔA−2(z)ÔA−1(x2)ÔA(x1)|Det〉
= 〈Det(−x1,−x2,−z)|Det(x1,x2, z)〉, (65)

where

|Det(x1,x2, z)〉 ≡
1√
A!

∑

P̂∈SA

εP P̂{ez·â1 |φp1
(1)〉 · · · ez·âA−2

×|φpA−2
(A− 2)〉ex2·âA−1 |φpA−1

(A− 1)〉ex1·âA |φpA(A)〉}.
(66)

The r.h.s. of eq. (65) can be represented as the sum

of terms containing the matrix elements 〈φpi |Ôm|φpj 〉
(i, j,m = 1, 2, . . . A). Note that the permutations P̂ are
related to the single-particle states (not the nucleon la-
bels). In the simplest case of the 0s4 configuration, that
we encounter in 4He nucleus, all we need is to eval-
uate the matrix element 〈0s|Ôm|0s〉. We have written
|φ0s〉 = |0s〉|στ〉, where |0s〉 and |στ〉 are the space and
spin-isospin parts, respectively, of |φ0s〉. In the HOM,

φ0s(r) ≡ 〈r|0s〉 = (
√
πb)−3/2e−r2/2b2 , where b = r0 =

1/p0 is the harmonic-oscillator parameter. The state |0s〉
coincides with the lowest-energy state |000〉 which is the
“vacuum” of the Cartesian representation, viz, â|000〉 = 0.
As a consequence, the radial matrix element of interest is
equal to unity and

〈0s4|Ô1(z)Ô2(z)Ô3(x2)Ô4(x1)|0s4〉 = 1, (67)

rendering the rest of the calculation trivial. We are now in
a position to write down expressions for all the quantities
considered, in the case of 4He. In particular, performing
the necessary integrations and taking into account the nor-
malization of each quantity, we get for the intrinsic OBMD
and TBMD in the EST prescription

ηEST(p) = ηEST(p) =
43/24b3

33/2π3/2
e−

4
3p

2b2 , (68)

η
[2]
EST(p,k) =

23/212b6

π3
e−

3
2p

2b2e−
3
2k

2b2e−p·kb
2

. (69)
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Regarding the properties of these distributions, we find
that they satisfy the relation (55):

∫

η
[2]
EST(p,k)d

3p = 3ηEST(k).

In the simple HOM (with the CM correction not included)
we have [11,31,43]

η(p) = η(p) =
4b3

π3/2
e−p2b2 , (70)

η[2](p,k) =
12b6

π3
e−p2b2e−k2b2 . (71)

We notice that, within the HOM, the expression for the
OBMD in the EST approach, eq. (68), is the same as the
one without the CM fixation, eq. (70), if one substitutes

b with
√

4/3b. This results in a narrowing of distribution
ηEST(p)/ηEST(0) compared to η(p)/η(0). But this obser-
vation does not mean that the CM correction reduces to
the renormalization b → bCM =

√

4/3b. In this connec-
tion, let us recall the work [22], where the charge FF and
the dynamic FF of 4He were calculated under some simpli-
fying assumptions using the same oscillatory wave func-
tion and the EST prescription. Its main discovery was
the narrowing of both the intrinsic density and OBMD
due to the CM correction. In order to demonstrate this
phenomenon, let us write the nucleon density in the EST
approach,

ρEST(r) = 4
exp(− r2

r̄2
0
)

π3/2r̄30
, (72)

that follows directly from previous derivations and rewrite
eq. (70) in the form

ηEST(p) = 4
exp(−p2

p̄2
0
)

π3/2p̄30
. (73)

Here we have come back to the oscillator parameters r0

and p0 and introduced the new values r̄0 =
√

A−1
A r0 and

p̄0 =
√

A−1
A p0. Meanwhile, we write

√

A−1
A instead of

√

3/4 to point out a trend in the A-dependence of this
effect of center-of-mass motion. We notice that the corre-
sponding quantities in the simple HOM

ρ(r) = 4
exp(− r2

r02 )

π3/2r03
,

η(p) = 4
exp(− p2

p0
2 )

π3/2p03

are obtained from eqs. (72)-(73) when A→∞.
Thus we see (cf. [22]) that the inclusion of CM cor-

rections gives rise to the two renormalizations, r0 → r̄0 =
√

A−1
A r0 and p0 → p̄0 =

√

A−1
A p0, of the oscillator param-

eter values, r0 and p0, in the density and momentum dis-
tributions calculated within the simple HOM. Evidently,

such changes are not accounted for by a hasty replace-
ment of b by

√

4/3b. (Therefore, the discussion in ref. [44],
p. 263, on the results of ref. [22] is incomplete.) One may
say that we encounter a specific effect of shrinking of the
density distribution ρ(r) and the momentum distribution
η(p). The term “shrinking” implies that each of these den-
sities, after being CM corrected, increases in its central but
decreases in its peripheral region. As has been shown in
the past [22,45], such a simultaneous change of the one-
body distributions plays an essential role in getting a fair
treatment of the data on elastic and inelastic electron scat-
tering off 4He. Notice that the product r̄0p̄0 = 1−1/A 6= 1,
unlike the relation r0p0 = 1. The commutation rules for
the intrinsic coordinates r′ = r − R and conjugate mo-
menta p′ = p−P/A

[(r̂′)i, (p̂′)j ] = iδij(1− 1/A) , i, j = 1, 2, 3

and the corresponding uncertainty principle are related
to this deviation from unity [41]. Thus, the uncertainty
principle is not contradicted by the simultaneous shrinking
of the density and momentum distribution (see also [46],
Lect. I, Suppl. C).

A similar shrinking is encountered also in the two-

dimensional surface given by the function η
[2]
γEST(p, k) ≡

η
[2]
EST(p,k) vs. the one given by η

[2]
γ (p, k) ≡ η[2](p,k), at

each value of the correlation angle γ. This effect is clearly
visible if the TBMD of 4He is represented as

η
[2]
γEST(p, k) =

[

A
A−2

]3/2

η[2]γ (p, k)e
− 1
A−2

(p+k)2

p0
2 .

Now, in order to compare numerically calculations
based upon the formulae (69) and (71), we adopt, as in
ref. [22], the following way of determining the harmonic-
oscillator parameter b. We start with a general expres-
sion for the charge FF FC(q) = fp(q)F (q) of a nu-
cleus, where fp(q) the correction factor for the finite pro-
ton size, corresponding to the proton mean-square radius
bp ≈ 0.8 fm, as in ref. [43]. The FF of the 4He nucleus
equals F (q) = exp(−r02q2/4) in the simple HOM and
FEST(q) = exp(−r̄20q2/4) in the HOM with CM correc-
tions. In each of the two models the value of the adjustable
parameter r0 = b will be determined by the requirement
to reproduce the experimental value of the charge mean-
square radius of 4He, rrms = 1.67 fm [47]. Then in the
simple HOM (b = b0) we have

r2rms =
3

2
b20 + b2p

and therefore b0 = 1.197 fm. When CM motion corrections
are taken into account (b = bCM),

r2rms =
3

2

A− 1

A
b2CM + b2p

and therefore bCM = A
A−1b0 = 1.382 fm. By adopting

this fitting we therefore get the identical q-dependence,
FEST(q) = F (q) = exp(−b02q2/4), while the difference
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Fig. 1. The TBMD of 4He for p ‖ k and p = 0, 1, 1.5 fm−1,
as a function of kp, where k = kpp̂, in the HOM model. Full
line: with CM motion effects taken into account within the
EST approach, eq. (69), with b = bCM; long-dashed line: in
the simple HOM, eq. (71), with b = b0 (HO1); short-dashed
line: in the simple HOM, eq. (71), with b = bCM (HO2), from
refs. [11,31].

between the respective OBMDs becomes more consider-
able. In fact, we have

ηEST(p) = 4
[

A
A−1

]3 b0
3

π3/2
exp

(

−
[

A
A−1

]2

p2b0
2

)

vs.

η(p) = 4
b0

3

π3/2
exp(−p2b02).

The former differs from the latter by a substitution b0 →
A

A−1b0.

In fig. 1 the TBMD of 4He is shown for p =
0, 1, 1.5 fm−1 as a function of kp, where k is parallel to
p and k = kpp̂, i.e., kp is positive (negative) for k in the
same (opposite) direction as p. The TBMD that we have
calculated using the EST method, i.e., with CM motion
corrections (b = bCM), is plotted with full lines, while the
TBMD within the simple HOM with b = b0 is plotted with
long-dashed lines (“HO1”) and the TBMD within the sim-
ple HOM with b = bCM is plotted with short-dashed lines
(“HO2”) taken from refs. [11,31]. One can observe the
shift of the peak from kp = 0 towards negative kp’s, for
p 6= 0, due to the correlation induced by the fixed center
of mass.

In refs. [11,31] the dimensionless quantity

ξ(p,k) ≡ η[2](p,k)/η(p)η(k) (74)
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Fig. 2. The quantity ξ of 4He for p ‖ k and p = 0, 1, 1.5 fm−1,
as a function of kp, where k = kpp̂, in the HOM model. Full
line: with CM motion effects taken into account within the
EST approach, eq. (76) for b = bCM ; dashed line: in the simple
HOM, eq. (75), refs. [11,31].

was introduced, as a measure of correlations of statistical
and dynamical origin as well as of finite-size effects. In
the complete absence of correlations, ξ should be equal
to 1 − 1/A. In the case of the infinitely extended ideal
Fermi gas ξ is defined for p, k ≤ pF , where pF is the Fermi
momentum, and if p 6= k, ξ = 1 (note that A→∞), while
for p = k, ξ = 1− 1/ν (ν is the degeneracy of the particle
states). Even for the finite non-interacting fermion system,
ξ = 1 − 1/ν if p = k (because η[2](p,k) = η(p)η(k) −
1
ν |η1(p,k)|2 holds). Deviations of ξ(p,p) from this value
show the effect of other-than-statistical correlations. For
p 6= k, deviations from 1− 1/A is a measure of statistical
and (or) dynamical correlations in a system of finite size.
In addition, in the case of self-bound systems, deviations
from this value account for the correlation due to the fixed
center of mass of the system.

The system of 4He in the simple HOM is a special case
for which ν = A and therefore

ξ = 1− 1/ν = 0.75 (75)

for all p and k. The same does not hold after fixing the
center of mass. Then we have

ξEST(p,k) = η
[2]
EST(p,k)/ηEST(p)ηEST(k)

= 0.89493e−
1
6p

2b2e−
1
6k

2b2e−p·kb
2

. (76)

In fig. 2, we plot ξ as a function of kp, where k = kpp̂,
for p = 0, 1, 1.5 fm−1. In fig. 3, log10 ξ is plotted as a func-
tion of cos γ, where γ is the angle between p and k. The
full, long-dashed and short-dashed lines correspond to the
ξEST(p,k) of eq. (76) for p = k = 1 fm−1, for p = 1,
k = 4 fm−1 and for p = k = 4 fm−1, respectively, and
the dashed lines to ξ(p,k) = 0.75, eq. (75). The effect
of CM correlations is important. The EST TBMD favors
momenta of opposite directions, as compared to the prod-
uct of the two OBDM, while in forward angles ξEST is
significantly reduced. In refs. [11,31] the effect of short-
range correlations (SRC) was investigated by including in
the simple HOM Jastrow-type correlations in the calcula-
tion of TBMD of the 4He nucleus using the lowest-order
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10
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with CM motion effects taken into account within the EST
approach, eq. (76) for b = bCM ; dotted line: including short-
range correlations within the LOA [11], without CM motion
effects taken into account; dot-dashed line: in the simple HOM,
eq. (75) (result independent of p, k and γ).

approximation of ref. [32]. Significant deviations from the
independent-particle picture were found for large values
of p and k close to γ = 180◦ and 0◦. In fig. 3 the corre-
sponding quantity ξ for the case p = k = 4 fm−1 is plotted
in logarithmic scale for comparison. It is anticipated that
within the EST approach additional corrections due to
SRC will appear mainly at high values of p and/or k and
that they will be larger when p and k are antiparallel.

6 Summary and conclusions

The intrinsic one-body and two-body density matrices in
coordinate space and corresponding Fourier transforms in
momentum space have been studied for a nucleus (a non-
relativistic system) that consists of A nucleons (particles).
We have seen how these quantities of primary concern can
be expressed through expectation values of the A-particle

multiplicative operators ρ
[1]
int and ρ

[2]
int sandwiched between

intrinsic nuclear states. Our consideration is translation-
ally invariant since the operators depend on the relative
coordinates and momenta (Jacobi variables). To avoid a
cumbersome multiple integration, we have developed an
algebraic technique based upon the Cartesian representa-
tion, in which the Jacobi variables are the linear combi-
nations of the creation and destruction operators for os-
cillator quanta in the three different space directions. In
the framework of the subsequent operations the normal

ordering of the operators involved in ρ
[1]
int and ρ

[2]
int plays

a central role in getting both the general results and the
working formulae.

The Cartesian representation is convenient and allows
us to find simple links between the relevant distributions
via the generating functions constructed here. In partic-
ular, the OBMD η(p) and the elastic FF F (q) can be
deduced from one and the same generating function by
changing the values of its arguments.

In the course of such a procedure the so-called Tassie-
Barker factors stem directly from the intrinsic operators
(not the WFs). One should emphasize that these factors
(different for different distributions) occur here reflecting
the translationally invariant structure of the correspond-
ing intrinsic operators. Each of them is a Gaussian whose
behavior in the space of variables is governed by the size
parameter r0 (or its reciprocal p0) and the particle num-
ber A for a given system, but it does not depend upon the
choice of the g.s. WF. The latter can be a simple Slater
determinant, include SRC or not, be CM-corrected or not,
etc. In practical calculations, such WFs (in particular, the
reference WF |Ψ〉 in eq. (12)) are often expanded in the
convenient HO basis functions. Therefore, in order to ex-
ploit all the power of the HO algebra when manipulating
the intrinsic operators, it is pertinent to set the working
r0-value equal to the respective “optimum” value of the
oscillator parameter.

In order to realize all the general results, obtained
above for the intrinsic density matrices and related dis-
tributions, the intrinsic wave functions of the nuclear
ground state have been constructed using the prescrip-
tion by Ernst, Shakin and Thaler, that leads to the so-
called fixed-CM approximation. In this connection, we
have demonstrated how one can unify the different approx-
imate recipes of restoring the TI, if one starts with one of
them, e.g., with the EST projection operator. As a specific
example, analytic expressions for the intrinsic OBMD η(p)
and TBMD η[2](p,k) of the 4He nucleus have been derived
within the context of the independent particle shell model,
using harmonic-oscillator wave functions. When CM cor-
rections are taken into account, the OBMD and TBMD
are simultaneously shrunk with respect to the nontransla-
tionally invariant counterparts. In addition, the CM cor-
relation introduces in the case of the TBMD a dependence
on the angle between p and k. A shift of its peak for p 6= 0
in favor of opposite momenta and significant deviations for
large values of p and k and angles close to 180◦ are ob-
served. The above calculation is relevant to the current ex-
perimental study of two-nucleon knock out off He isotopes.
For instance, we see similar behavior as the one found in
the recent experimental study of the TBMD in 3He [5].

Of course, when increasing the momenta transferred
to a residual system (in particular, under kinematic condi-
tions where they are getting comparable with the nucleon
mass) the corrections to TI breaking should be considered
along with incorporating relativistic effects such as the
Lorentz contraction of nuclear WFs and a specific veloc-
ity dependence of nuclear forces. The latter is typical of
relativistic one-particle-exchange models (see survey [48]
and references therein), where, for instance, the nucleon-
nucleon quasipotential, including recoil effects, is essen-
tially nonlocal and prevents, in contrast to the nonrela-
tivistic case, the separation of the CM motion of the rela-
tivistic system (nucleus) from its internal motion. In other
words, the corresponding four-momentum eigenstates can-
not be factorized as a product of independent CM and in-
trinsic components. In this context, note the very instruc-
tive work of ref. [49]. Taking into account this distinctive
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feature of relativistic quantum mechanics, it is difficult a
priori to say to what extent the approach developed here
could be helpful in a covariant description of composite
systems. Nevertheless, an encouraging example is found
in ref. [50], where the fixed-CM approximation combined
with an appropriate Lorentz contraction has been used
for calculations of the nucleon electromagnetic FFs in the
cloudy bag model with CM and recoil corrections.

Using the techniques presented in this paper, one could
calculate the intrinsic TBMD of other than 4He Z = N , `-
closed nuclei within the context of the harmonic-oscillator
model. In addition, within the present framework one
could investigate the effects of short-range correlations
on the intrinsic TBMD of 4He and other `-closed nu-
clei, which are expected to be sizable for p, k ≥ pF , by
introducing Jastrow-type correlations. Also, other intrin-
sic two-body quantities could be evaluated within the
above general formalism (including other non-relativistic
systems). Finally, the approach developed here may be
helpful when evaluating the intrinsic one-body, two-body
and more complicated density matrices in the HOM and
in other independent-particle models (e.g., with single-
particle wave functions of a potential well with finite
depth, as was shown in ref. [41]).
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